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This paper deals with a discrete facility location model where service is provided at the facility sites. It is

assumed that facilities can fail and customers do not have information on failures before reaching them. As a

consequence, they may need to visit more than one facility, following an optimized search scheme, in order to

get service. The goal of the problem is to locate p facilities in order to minimize the expected total travel cost.

The paper presents two alternative mathematical programming formulations for this problem and proposes

a matheuristic based on a network flow model to provide solutions to it. The computational burden of the

presented formulations is tested and compared on a test-bed of instances.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important strategic decisions in the design of a

supply chain is the location of facilities. This has motivated a lot of

research on different facility location problems over the years (see e.g.

Drezner & Hamacher, 2004 and references therein) and, in particular,

on several discrete facility location problems.

In this context, decision makers may face a lot of uncertainties

which can affect not only costs, demands or production capacities,

but also facilities availability. That is, in many situations, disruptive

events can occur (system failures, natural disasters, terrorist attacks,

unexpected work overloads, shortages, labor strikes, etc.) that render

facilities temporary unavailable to provide service. These disruptive

events can be more or less likely to occur, but when they do, the

relocation of the affected customers yields extra costs, which have

been taken into account using different strategies.

On the one side, one can focus on identifying robust facility sets

that will perform reasonably well even when disruptions occur, ei-

ther in the underlying network or at the facilities themselves. In

this context, performance can reflect customers coverage or distri-

bution costs. Recent examples of robust facility location are Chen,

Daskin, Shen, and Uryasev (2006), Kulturel-Konak and Konak (2010),

Liu, Guo, Snyder, Lim, and Peng (2010), O’Hanley and Church (2011)

or Peng, Snyder, Lim, and Liu (2011). The so-called interdiction

models (Aksen & Aras, 2012; Church, Scaparra, & Middleton, 2004;
∗ Corresponding author. Tel.: +34 954 557 940; fax: +34 954 622 800.
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iberatore, Scaparra, & Daskin, 2011, 2012, O’Hanley, Scaparra,

García, 2013 etc.) can be seen as the extreme case of robust fa-

ility location where failures are not considered to be accidental but

he consequence of deliberate attacks. In this case, the most critical

ailures need to be identified in order to take them into account. A

requent extension to these models is to consider the possibility of

ortifying some of the located facilities (see Li, Zeng, & Savachkin,

013a).

In a real context, no company would accept a supply network with

igh regular operating costs just to hedge against very rare facility

isruptions, unless high penalties are associated with them. Thus, a

ensible strategy is to try to balance the regular operating costs and

he costs associated with failures. To this end, system configurations

hould depend on the regular service costs customers and also on the

ikelihood of the candidate sites to be disrupted. In particular, the so-

alled reliable facility location models aim at minimizing the expected

ervice costs in the long run, assuming that accidental failures occur

ith probabilities that are known in advance or can be accurately

stimated. To the best of our knowledge, reliable facility location was

rst addressed in Drezner (1987) where both, a median and a center

bjective function are considered, and the number of facilities that

ight fail is fixed. These issues were revisited much later in Snyder

nd Daskin (2005) and other works by the same authors.

Nowadays, reliability issues in supply chain design are of special

nterest. In particular, studies on system failures due to facility dis-

uptions are gaining attention (Benyoucef, Xie, & Tanonkou, 2013;

orton, Pan, & Saeger, 2007; Pan & Morton, 2008; Qi & Shen, 2007).

n the traditional locational analysis literature, Snyder and Daskin

2005) first propose an explicit formulation of the stochastic p-median

nd fixed-charge problems based on level assignments, where the
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andidate sites are subject to random disruptions with equal probabil-

ty. Alcaraz, Landete, and Monge (2012) propose heuristic algorithms

or solving this problem and the works by Zhang, Berman, and Verter

2009) and Berman, Krass, and Menezes (2007b) relax the assumption

f uniform failure probabilities. Zhang et al. formulate the stochastic

xed-charged problem as a nonlinear mixed integer program and pro-

ide several heuristic solution algorithms. Berman et al. (2007b) focus

n an asymptotic property of the problem with a median objective.

hey show that, when the probability of disruptions is significant, the

attern of optimal locations changes substantially; facility locations

ecome more centralized to provide better support in the event of

isruptions. Instead, as the failure probabilities approach zero, facili-

ies tend to spread out to minimize the travel costs, until they coincide

ith the optimal solution to the problem without failures. Addition-

lly, the authors propose approximation algorithms. More recently,

ui, Ouyang, and Shen (2010) have proposed a Lagrangean relax-

tion algorithm for this problem as well as a continuous approxima-

ion model for it. The same problem has been modeled and approxi-

ately solved using a two-stage stochastic program in Shen, Shan, and

hang (2011) and solved exactly using specialized upper and lower

ounds in Aboolian, Cui, and Shen (2013). Approximation algorithms

ave also been developed for this problem (e.g. Guha, Meyerson, &

unagala, 2003), although in this context this family of problems is

eferred to as fault-tolerant facility location.

Even within this particular context, many problem variants have

een considered, depending on the modeling assumptions made. For

nstance, problems with correlated failures are studied in Berman,

rass, and Menezes (2013) and Li, Ouyang, and Peng (2013b), prob-

ems with capacitated facilities in Gade and Pohl (2009) and Aydin and

urat (2013), and the possibility of installing non-failing facilities at

larger cost has also been explored (e.g. Lim, Daskin, Bassamboo,

Chopra, 2010). Other modeling issues concern information avail-

bility and customers’ behavior upon failures. If the service is at the

ustomers’ site, or it is at the facility but customers have complete

nformation about failures, then services can be reassigned to the

vailable facility that is closest to each customer. This assumption is

ade in most of the existing works. However, there are situations

here the service is provided at the facility and the customer cannot

now whether a facility is operative or not before reaching it. In these

ases, it is reasonable to expect that, after finding their facility un-

vailable, customers go directly to a new facility from there, instead

f traveling back home and choosing their next closest facility for be-

ng served. The models considering this assumption are referred to as

acility location with incomplete information (see, Berman, Krass, &

enezes, 2009).

Such models allow to tackle many realistic situations. For instance,

ank customers travel to their patronized ATM point to withdraw cash

nd thus they receive their service at the facility location. However,

ometimes these machines do not provide service because of network

isruptions, maintenance, or simply not servicing some customers’

ards and then customers are forced to move from that ATM to a dif-

erent one, which is likely to be chosen according to its distance to the

ustomer’s current location. In some other cases, disruption may be

ue to simple congestion; three cars in a drive-in window can make

t appear as disrupted since no new costumer will stop to get service,

r long waiting lists in emergency services will imply redirecting am-

ulances to a different hospital (Witlin (2006) reports that in the US

ne ambulance is diverted each minute due to emergency room over-

rowding), etc. Other examples mentioned in Berman et al. (2009), are

as stations (due to shortage of gas or to long line-ups), retail stores

customers looking to buy a necessary product in a store that is out of

tock), or hospital emergency rooms (which regularly experience very

ong waiting times that may cause newly arriving patients to seek ser-

ice elsewhere). These situations happen and it is very unlikely that

nformation systems will monitor them in a near future. Next, it is

easonable to assume that, under incomplete information, customers
ill usually follow a proximity based trial-and-error strategy to visit

acilities. They will sequentially try nearby facilities and either stop at

he first operative facility or give up after several unsuccessful tries.

Still, under the incomplete information assumption, different cus-

omer behaviors can be modeled. Indeed, each time a customer

eaches a facility that has failed, she can make her next choice based

nly on the distance to the next facility or on the expected distance

raveled before getting the required service. The first search scheme,

sed in Berman et al. (2009), responds to common situations where

he users do not have the capability to optimize the search for an

perating facility. In contrast to this, an optimized search can be as-

umed for regular services; when someone regularly requires a given

ervice, she gains enough experience to know with quite a good pre-

ision the frequency in which the service becomes unavailable (the

TM machine does not work, a very specific product is not available,

he taxi stop is empty, the usual parking lot is full . . . ). In such cases, it

s not rare that a customer uses this knowledge to make the decision

o travel in the direction where more services are located or they are

ore reliable thus trying to reach a facility that on average minimizes

otal travel time even if it is not the closest one to her current po-

ition. Military applications in a war theater of operations can also

e modeled assuming an optimized search scheme. This could be the

ase of units with limited information, due to communication disrup-

ion, that try to reach facilities that may have been attacked and are

o longer available. In order to improve the survival expectations of

heir own troops, one action to be developed by high-ranking officers

s to design, in advance, contingency plans so that expected travel

istances covered by their units is minimized; thus minimizing ex-

osure to further attacks. Another application of this search scheme

s in disaster scenarios. In these situations emergency services can, in

ractice, fail. Moreover, the difficulty to access real-time information

s an important issue in critical situations due to communication dis-

uption or facility failure (Galindo & Batta, 2013). In particular, after

large disaster, an emergency center located in the affected area is

ikely to be destroyed or seriously damaged. Therefore, having contin-

ency plans is important to improve efficiency. This kind of situation

as given, for example, in May 11, 2011, in the Spanish town of Lorca:

fter two consecutive earthquakes nine people were killed, 300 were

njured and the local hospital had to be evacuated due to the risk

f collapse (Albareda, Hinojosa, Marin, & Puerto, 2015). In all those

ases, simply moving to the next closest facility from the one that has

ailed would make a short-sighted decision.

In this work, we assume that users have incomplete information,

nd follow an optimized search scheme to find a facility to receive

ervice. In this regard, we have to introduce a routing component in

he reliability location model. In order to optimize the system con-

guration we must keep track of the path potentially followed by

ach customer until she receives her service. We introduce two dif-

erent formulations to model the situation described above. Our first

ormulation uses variables with three indices, including continuous

ariables that represent the probability that a given arc is traversed

y a costumer in her path to be serviced. We then present a second

ormulation in terms of four indices binary variables that trace the

aths among facilities using reliability levels. This second formula-

ion is rather intuitive but only applies to the particular case where

ll the failure probabilities are equal. We compare both formulations

nd prove that, in this particular case, they are equivalent, the first

ne providing tighter LP lower bounds. To cope with the very large

omputing times required to solve our exact formulations we intro-

uce another model that heuristically approximates the Reliability

-Median problem with at-Facility service in its general case. It re-

uires a much lower computing time and provides excellent sets of

ocations. This model is based on a reduced flow-like formulation

hat relaxes the assumption that each customer visits a given facility

t most once. Computational experiments show that this formulation

ives extremely good solutions at a non-expensive computing time.
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Fig. 1. Example: closer need not be better.
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The next section formally describes the Reliability p-Median prob-

lem with at-Facility service, discusses some of its properties, and

presents a general formulation for it. A reduced formulation, specific

for the case with homogeneous failure probabilities is presented in

Section 3, and the approximation we propose, in Section 4. Then, in

Section 5 we analyze the computational results obtained in a series of

instances taken from the literature. Finally, conclusions are outlined

in Section 6.

2. The reliability p-median problem with at-facility service

In this section we present the Reliability p-Median problem with

at-Facility service (RpMF). The RpMF is an extension of the discrete

p-median problem where the possibility that some of the facilities

can fail is taken into account. It is assumed that customers travel to

a facility for being served and only realize about facility failures on

scene. If this happens, they move to other facilities until finding one

that is operative. Moreover, each customer i � I visits the different

facilities in the order that minimizes her expected total travel cost,

defined as her demand (hi) times her total expected travel distance

without revisiting any facility. The goal in the RpMF is to identify the

set of p facilities to open that minimizes the overall expected travel

cost.

As in other works on reliable facility location (e.g. Snyder & Daskin,

2005), facilities (J) are divided into two disjoint groups (J = F�NF); the

facilities that can fail (which will happen with a known probability qj,

j � F) and those that will never fail (NF). Moreover, facility failures are

assumed to be mutually independent. In addition, the possibility of

balking is modeled by means of an extra dummy facility 1 � NF, which

is forced to be opened. Without loss of generality, we can assume that

I = J. We will also assume that we are working in a complete connected

network, being the length of every arc (j, k) the shortest travel distance

between site j and site k. For ease of readability these assumptions

will be made in what follows.

In order to describe and evaluate a solution, not only do we need

to identify the set of p opened facilities, but we also need to describe

the path that each customer will partially follow until getting served.

In what follows, we will say that a facility is assigned to a customer

at level r if the facility occupies position r in the prospective path of

the customer. The reader may observe that for a given subset of facil-

ities assigned to a customer, the optimal assignment levels need not

correspond to the order defined by the distances from the customer

to these facilities. Moreover, it may be sub-optimal to assign each

customer to her closest facility. As the example in Fig. 1 shows, it may

be optimal to assign a customer to a facility that is farther away but

less likely to fail or closer to other facilities.

In this example, where equal failure probabilities q are assumed, if

customer i must travel along the network, the trip obtained following

a closest assignment policy is abc. However, depending of the failure

probability q (actually, for any q � (0.06, 0.89)) the expected service

cost is smaller for the trip bca. This is exactly the trip proposed by our

model for these situations.

This policy for defining the customer paths is the difference be-

tween the RpMF and the problem studied in Berman et al. (2009),

where the closest facility to the current customer location is chosen

at each step. While in Berman et al. (2009) it is assumed that, when a

facility fails, customers travel to the closest facility to it, in our work,
s in Berman, Ianovsky, and Krass (2011), it is assumed that the path

ollowed by the customers is the one minimizing their expected total

ravel time. However, whereas Berman et al. (2011) assumes that the

ocations of the facilities are fixed, in our model the location of the

acilities is a decision to make. At this point, we have to emphasize

he essential difference between the model in Berman et al. (2011)

nd the RpMF: in the former there are no location decisions to make

hereas in the latter one has also to decide where to install the facil-

ties. This makes the problem much more difficult since in the RpMF

wo levels of decision are required, namely, location and routing.

Let djk be the shortest travel distance from site j to site k, and hi the

emand of customer i � I. Assuming that I = J, that we are working

n a complete connected network, as mentioned above, and using the

ollowing sets of variables,

xj =
{

1 if a facility is opened at location j

0 otherwise
j ∈ I,

ijk =
{

1 if arc (j, k) is in the path of customer i

0 otherwise.
i, j, k ∈ I

nd

ijk ∈ [0, 1] : probability that customer i uses arc (j, k); i, j, k ∈ I

he problem can be formulated as follows:

F1) min
∑
i∈I

hi

∑
j∈I

∑
k∈I

djkwijk (1)

s.t.
∑
j∈I

xj = p (2)

x1 = 1 (3)∑
j∈I

yijk � xk i, k ∈ I (4)

∑
k∈I

yijk � 1 i, j ∈ I (5)

∑
k∈I

wijk = qj

∑
k′∈I

wik′j i ∈ I, j ∈ F, i �= j (6)

∑
j∈I,j �=i

wiij = (1 − xi) i ∈ NF (7)

∑
j∈I,j �=i

wiij = 1 − (1 − qi)xi i ∈ F (8)

wijk � yijk i, j, k ∈ I (9)

xj, yijk ∈ {0, 1} i, j, k ∈ I (10)

wijk ∈ [0, 1] i, j, k ∈ I. (11)

Constraints (2) guarantee that exactly p facilities are open, and

onstraint (3) forces the dummy facility representing the loss of a

ustomer to be one of them. Constraints (4) (resp. (5)) state that

ach customer can reach (resp. leave) a given facility at most once.

ote that, being y variables binary, these constraints would enforce

ariables x to take binary values and therefore their definition in (10)

an be relaxed to be nonnegative. (The reader should observe that

similar relaxation is not possible for the y variables, even keeping

ntegrality for the x variables. Easy examples can be built showing

he inconsistence of that relaxation.) Constraints (6) are a kind of

ransition constraints: if a customer leaves a given facility it means

hat the facility has failed; thus, the probability that a customer leaves

acility j must be qj times the probability of having reached it. The

robability of a given customer leaving its home site is separately

et by constraints (7) and (8) for non-failing and failing facilities,
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espectively. Finally, constraints (9) force y and w variables to take

onsistent values.

We observe that in the above formulation, we do not have to force

ach path to have at most p stops since by constraints (4) it is only

llowed to use arcs that arrive at open facilities and each customer

an get to any facility at most once. Therefore, altogether implies that

here are no cycles and that each customer’s tour has at most p stops.

Although the previous formulation is complete, we have con-

idered four intuitive families of additional valid inequalities to

trengthen it. The first one relates the probabilities of using given

rcs. If arc (j, k) belongs to the prospective path of customer i, the

robability that customer i uses it cannot be smaller than the product

f the p − 1 smallest failure probabilities. Therefore,

ijk � ρpyijk, i, j, k ∈ I, (12)

here ρp represents the product of the p − 1 smallest probability

ailures among facilities in F. Preliminary computational experiments

shown in Section 5) have proved it useful to add this family of valid

nequalities to the above formulation.

In addition, we have considered three more families of valid in-

qualities. In all cases their number is O(|I|2) and they can easily be

eparated by inspection.

On the one hand, we considered the valid inequalities∑
∈I,k∈NF

yijk � 1, i ∈ F, (13)

nsuring that the path followed by any customer i not belonging to

F will always end at a non-failing facility. This inequality has to be

atisfied by any feasible solution since in any solution there is, at

east, one non-failing open facility (the one modeling the loss of the

ustomer) and any feasible path will end at a non-failing facility (k �
F). On the other hand, analogously to Eqs. (6), flow balance equations

n y variables must also hold:

k∈J

yijk =
∑
k′∈I

yik′j, j ∈ F, j �= i. (14)

inally, for i � I, j � F, i � j, Constraints (5) can be reinforced to

k∈I

yijk � xj. (15)

reliminary computational tests lead us to solve this formulation in-

luding constraints (14) but neither constraints (13) nor (15).

Including constraints (12) and (14), this formulation has O(|I|3)

inary variables, O(|I|3) continuous variables, and O(|I|3) constraints.

. A binary formulation for the homogeneous case

In Formulation F1, continuous variables w are used to apply the

ight probabilities to the arcs when computing the expected travel

osts. These probabilities are, in fact, products of failure probabili-

ies of different sets of facilities. Consequently, in the particular case

here the failure probabilities are homogeneous, all those probabil-

ties are powers of the common failure probability. Therefore, in this

ase, they can be alternatively included in the formulation by con-

idering an extra index in the y variables, to indicate the customer

ssignment levels. This is inspired in the ideas used in Berman et al.

2009), when modeling a similar problem, but with service at the

ustomers’ site (and, thus, assignments to the closest facilities) and

n Snyder and Daskin (2005) where different assignment levels are

sed to represent the order in which the open facilities will serve a

ustomer in case of failures.

To implement this idea, we will use again variables:

xj =
{

1 if a facility is opened at location j

0 otherwise
j ∈ I,
ow together with:

ijkr =
⎧⎨
⎩

1 if customer i travels from facility j to
facility k at level r

0 otherwise,
i, j, k ∈ I, r ∈ {1, . . . , p}.

Taking into account that we have assumed I = J, variables yijkr are

ot defined (or, equivalently, fixed to zero) in the following cases:

• yijjr, for any i, j � I, r � {1, . . . , p} since no customer will be assigned

to the same facility in two different levels.
• yiikr, for r > 2 and any i, j � I, since a customer must travel from its

origin to a facility before level 2.
• yijir, for any i, j � I, r � {1, . . . , p}, since it makes no sense that a

customer goes back to its home place after visiting another place.

Using the above variables and assuming that all the failure proba-

ilities are equal (qj = q, j � J), the RpMF can be modeled as follows:

F2) min
∑
i∈I

hi

p∑
r=1

qr−1
∑
j∈I

∑
k∈I

djkyijkr (16)

s.t.
∑
j∈I

xj = p (17)

x1 = 1 (18)∑
j∈I

yijkr =
∑
�∈I

yik�r+1 i ∈ I, r = 2, . . . , p − 1, k ∈ F (19)

∑
j∈I

yijk1 �
∑
�∈I

yik�2 i ∈ I, k ∈ F (20)

p∑
r=1

∑
k∈I

yijkr � 1 i, j ∈ I (21)

p∑
r=1

∑
j∈I

yijkr � xk i, k ∈ I (22)

∑
k∈I

yiik1 + xi = 1 i ∈ I (23)

∑
k∈I

yiik2 = xi i ∈ F (24)

yijkr � (1 − xi) i ∈ NF, j, k ∈ I; r = 1, . . . , p (25)

xj, yijkr ∈ {0, 1} i, j, k ∈ I; r = 1, . . . , p. (26)

Now, the objective function (16), computes the sum of the ex-

ected service costs for all the customers. Equation (17) fixes the

umber of facilities to establish, and Eq. (18) forces the dummy fa-

ility used to model balking to be among them. Constraints (19) and

20) ensure that if a customer goes to a failing facility at a given level r

p it leaves that facility in the next level. To make sure that a facility

ill not be used in more than one level by the same customer, we use

onstraints (21). In the same way, we use (22) to make sure that a

ustomer can only use a facility at some level if it is open. Equations

23) are used to ensure that, for a given customer, either it becomes

facility, or it has a primary assignment. Analogously, we use con-

traints (24) to ensure that if a failing facility is established at a given

oint, the corresponding customer will have a secondary assignment.

n the case of non-failing facilities, constraints (25) guarantee that if a

on-failing facility is settled, its corresponding customer will not be

ssigned to any other facility. Finally, we easily observe that we can

elax x variables to take continuous values rather than binary ones

ince constraints (22) will enforce this property from the y variables.

We observe that formulation F2 uses essentially the same set of

ariables as the formulation presented by Berman et al. (2009). How-

ver, the variations with respect to that formulation are essential to
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reflect the different modeling assumptions: the different behavior

of the customers looking for at-facility service and the existence of

non-failing facilities (as a physical reality, or just to model situations

where a customer is lost).

Note that this formulation has O(p|I|3) binary variables and O(p|I|2)

constraints. The main reason for using so many variables is the need

of keeping track of the path followed by each customer, to ensure that

no customer will visit the same facility twice. This formulation is as

intuitive as F1 but it does not mix binary and continuous variables.

On the other hand it uses a larger number of variables, and is only

valid for the particular case where all failure probabilities are equal.

For this case, we show next that the two formulations are equivalent.

Proposition 3.1. For the particular case with homogeneous failure prob-

abilities, formulations F1 and F2 are equivalent.

Proof. Consider an instance of the RpMF where all the failure prob-

abilities are equal (qj = q �j � J). Let (x, y) be a feasible solution of

Formulation F2. We will see that there exists a feasible solution of

Formulation F1 (x̄, ȳ, w̄) such that the objective function values (16)

and (1) are equal. Conversely, from any feasible solution of Formula-

tion F1 (x̄, ȳ, w̄) we will derive a feasible solution of Formulation F2

(x, y) such that their objective function values coincide.

• Assume that (x, y) is a feasible solution of Formulation F2. Then x̄j =
xj, ȳijk = ∑p

r=1 yijkr and w̄ijk = ∑p
r=1 qr−1yijkr for all i, j, k, defines a

feasible solution of F1 with the same objective value as (x, y) in F2.
• Conversely, let (x̄, ȳ, w̄) be a feasible solution of Formulation F1.

Observe that, thanks to constraints (5) and (9), for a given pair i, j,

w̄ijk can only be different from zero for one k index. Together with

this condition, constraints (6)–(8) force w̄ variables to take values

that are powers of q. Thus, equations
∑p

r=1 qr−1yijkr = ȳijkw̄ijk for

all i, j, k, have a binary solution yijkr. This solution together with

xj = x̄j for all j � I define a feasible solution of F2 with the same

objective value as (x̄, ȳ, w̄) in F1. �

Although this new formulation is larger than F1 in terms of num-

ber of variables, it has a smaller number of constraints, which in

F1 is dominated by the O(|I|3) sets of constraints linking y and w

variables. As it will be seen later in the computational experience,

solving F2 to optimality using standard MIP solvers is computation-

ally less demanding than solving F1. Nevertheless, it still has strong

computational requirements. Moreover, it can only be used for the

homogeneous case. For this reason, in the next section we present

a relaxation of the RpMF that is valid for the general case, whose

formulation can be solved with a smaller computational effort . We

evaluate the heuristic solutions to the RpMF obtained by solving this

relaxation in Section 5.

4. Flow approximation to the p-reliable facility location

problem with at-facility service

In the RpMF it is assumed that a given customer visits each of the p

opened facilities at most once. In this section we consider the problem

that is obtained by relaxing this assumption. Without this assumption,

it is no longer needed to keep track of the path followed by a given

customer, since now customers are allowed to revisit facilities. A

natural consequence of relaxing this assumption is the following: if a

given facility j � I fails, all customers that have reached that location,

independently of the path they have followed before, will continue

their path to the same next facility j′. In what follows, we will refer to

j′ as the backup facility of j.

The program presented in this section takes advantage of this fact

to formulate the problem using the following variables:

• xj =
{

1 if facility j is opened

0 otherwise,
j ∈ I.
• yjj′ =
{

1 if the primary assignment of point j is to j′

0 otherwise,
j, j′ ∈ I.

• wjj′ = expected total flow from j to j′, j, j′ ∈ I.

• ujj′ =
⎧⎨
⎩

1 a facility is opened at site j and j′ is

its backup facility

0 otherwise,

j, j′ ∈ I.

A formulation of the proposed relaxation for the general case of

he RpMF follows.

FP) min
∑
i∈I

∑
i,j∈I

dijwij (27)

s.t.
∑
j∈I

xj = p (28)

x1 = 1 (29)

∑
k∈I

wjk = qj

(∑
i∈I

wij + hjxj

)
+ hj(1 − xj) j ∈ F (30)

∑
k∈I

wjk = hj(1 − xj) j ∈ NF (31)

wjk � hjyjk j �= k ∈ I (32)

wjk � Mujk + hjyjk j �= k ∈ I (33)

∑
k∈I

ujk = xj j ∈ F (34)

xj +
∑

k∈I,k �=j

yjk = 1 j ∈ I (35)

ujk � xk j ∈ F, k ∈ I (36)

yjk � xk j, k ∈ I (37)

xj, ujk, yjk ∈ {0, 1} j �= k ∈ I (38)

wjk � 0 j �= k ∈ I. (39)

Constraints (28) and (29) are equivalent to (17) and (18) in for-

ulation F2 of the RpMF; they set the number of facilities to open

nd force the dummy facility representing the loss of a customer be-

ng one of them. Constraints (30) are flow conservation constraints at

odes in F. If no facility is settled at location j � F, the whole demand

j must leave node j, otherwise, the expected flow leaving node j is

qual to the probability that j fails times the flow at j, which is equal

o the entering flow, plus the demand at j. Analogous constraints for

odes in NF are given by Eqs. (31). Next, constraints (32) force primary

ssignments to be consistent. If facility k � j is the primary assignment

of customer j, then all the demand of customer j must go through arc

(j, k). On the other hand, constraints (33) force u and y variables to

e consistent with flows given by w, namely, if some flow goes from

ode j to k it is because some customer travels between these two

acilities. Here, M must be an upper bound on the expected flow from

ode j to node k, in solutions were a facility is located at j. The value

hat has been used for this bound in the computational experiments

s qj

∑
i∈I hi. Next, constraints (34) link u and x variables, making sure

hat any open failing facility has exactly one backup facility assigned.

inally, constraints (35) ensure that each node has either an open

acility or a primary assignment. The remaining constraints are logi-

al links between the binary variables. We observe once more that x

ariables might be defined as continuous since (37) will ensure their

inary character.

This program involves O(|I|2) variables and O(|I|2) constraints.

herefore, it is much smaller than any of the proposed formulations

or the RpMF.
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Table 1

Number of instances.

Original dataset Sampled sizes n Number of facilities p Number of replications per (n, p) Total number of instances

Type I instances 49 nodes 20, 25, 30, 35, 40, 45 4, 5, 6 3 54

88 nodes 20, 25, 30, 35, 40, 45 4, 5, 6 3 54

150 nodes 20, 25, 30, 35, 40, 45 4, 5, 6 3 54

Total 162

Type II 50 nodes 20, 25, 30, 35, 40, 45 4, 5, 6 3 54

instances 100 nodes 20, 25, 30, 35, 40, 45 4, 5, 6 3 54

Total 108

Total 270
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Note that the feasible region of FP strictly contains that of the

pMF since paths that are not feasible for the RpMF are considered in

P. Indeed, if the expected length of a potentially infinite loop among

pened facilities is not longer than the length of an elementary path

eading to a non-failing facility, the obtained solution can contain

uch a loop, yielding an underestimate of the real expected service

ost of a customer. Therefore, the optimal FP value is always a valid

ower bound to the optimal value of the RpMF. Observe also that the

-parts of the feasible solutions of FP provide partial solutions for the

pMF that can be completed in a straightforward way: once the open

acilities are fixed, the optimal paths associated with each customer

an be easily found by fixing the location variables in formulation F1.

hus, solving formulation FP we can obtain both, a feasible solution

o the RpMF, and a lower bound to its optimal value.

We have carried out a series of computational experiences to as-

ess the quality of the sets of facilities given by this approximation as

olutions for the RpMF, and to evaluate the computational effort re-

uired to find them. The obtained results are reported in the following

ection. Finally, it is worth mentioning that the approach presented

n this section is close to the one presented in Berman et al. (2009). In

hat paper the authors bring up the idea of common paths in a differ-

nt but related way. Also Berman, Huang, Kim, and Menezes (2007a)

resent a somehow similar approach, although in a queueing context.

. Computational experience

.1. Comparison of all formulations: homogeneous instances

To evaluate the difficulty of solving the different formulations pre-

ented in this work and the quality of the heuristic solutions to the

pMF given by formulation FP we have generated a series of instances

hat are described next.

Note that the set of data required to define a problem instance with

t-facility service is the same as for the problem with at-customer

ervice, except that in the former fixed costs for opening facilities

re not considered. As a basis for generating our instances, we took

he instances used in Snyder and Daskin (2005) for the problem with

t-customer service. In that work, five instances were considered,

ivided into two groups. The first group contains three instances of

9, 88, and 150 nodes, respectively. These nodes are taken as cities

n the United States with demands proportional to the city popula-

ion, distances equal to the great circle distances among them, and

cost for missing a customer equal to 104. In those instances, the

nly non-failing facility is the dummy facility that models losing a

ustomer. The second group contains two randomly generated in-

tances with 50 and 100 nodes taken from [0, 1] × [0, 1]. In that set,

uclidean distances are considered, demands are taken in [0, 1000],

nd the cost for missing a customer is set to 10. In all cases, to be able

o compare the three formulations, a common failure probability is

sed for all the facilities that belong to F, which is taken to be q =
.05. The dummy facility representing the loss of a customer is not

aken into account in the dimensions (n, p) of the instance, and thus,

= |I| − 1. Note that the possible applications of the RpMF are mostly
efined in quite local settings. Therefore, the instances defined on

ifferent sets of North-American cities may look somehow inappro-

riate. However, we think the obtained results would be the same

ith distances within a smaller scale, and using the same data as in

nyder and Daskin (2005) allows to compare the computational bur-

en of the problem variants with at-facility and at-customer service.

n what follows we will refer the first group of instances as Type I

nstances, and the second one as Type II instances.

In order to generate smaller instances, we randomly selected sub-

ets of nodes from the original data sets with sizes n � {20, 25, 30,

5, 40, 45} and considered values of p � {4, 5, 6}. In particular, for

ach original instance and each dimension (n, p) we generated three

ifferent new instances, giving rise to a total of 270 instances. This

nformation is summarized in Table 1.

The three formulations presented in this work where imple-

ented using C and CPLEX 12.1 callable libraries and a time limit

f 1 hour of CPU time was set. All the experiments were run on a per-

onal computer running under Windows XP equipped with an Intel

ore Duo E8500 processor at 3.16 gigahertz with 3.4 gigabyte of RAM.

The CPU times required for solving the RpMF on the generated

nstances using Formulation F1 were extremely large; they exceeded

he CPU time limit of 1 hour in 56 of the 162 Type I instances, and in

4 of the 108 Type II instances.

In the case of formulation F2 the CPU times, in seconds, are de-

icted in Fig. 2. In these figures we have considered separately Type

and II instances since, as can be seen, their behavior is quite differ-

nt. This fact can be attributed to the difference in the relationship

etween node distances and failure probabilities among these sets,

nd also to the fact that Type I instances are based on real data which

esults in non-uniform distributions of the demands while Type II

nstances are based on random (uniform) distributions of demands.

or each instance class (Types I and II) and size (n, p) the average CPU

ime is plotted. Note that these averages consider either nine or six

nstances, depending on the class. In both cases, however, the value

f the number of medians to settle does not show a great impact on

he computational burden of formulation F2. Conversely, both, the

umber of customers and the instance class seem to have a strong

ffect on the effort required to solve the RpMF using formulation F2.

n both classes the difficulty of the instances increase fast as they

ecome larger, but they are consistently more difficult in the Type II

lass, where the penalty for losing a customer is smaller, as compared

o the distances between the nodes and, thus, the dummy non-failing

acility is more attractive.

Despite the fast growth of the computational effort required to

olve the considered instances, no instance in the Type I class required

ore than 3 minutes, and all instances in the Type II class could be

olved in, at most, 10 minutes. These encouraging results lead us to

ry to solve larger instances. To this end, we considered the five full

nstances from Snyder and Daskin (2005) (with n ranging from 49 to

50) combined with p � {5, 10, 20}. For these instances, we set a CPU

ime limit of 2 hours. In the case of formulation F2, CPLEX was not

ven able to load the problem in most cases. In contrast, FP was able

o solve 10 out of the 15 instances in less than 2 hours, including the
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Fig. 2. CPU times (seconds) for solving formulation F2.

Table 2

FP: Percent gaps at termination for unsolved instances.

Instance n p Percent gap

88UFLP 88 5 5

88UFLP 88 10 3

100EuclUFLP 100 5 7

100EuclUFLP 100 10 8

100EuclUFLP 100 20 5
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Fig. 3. Percent deviations of the FP bounds.
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Type I instances with n = 150. Indeed, none of them took more than

1 hour, and the average time was 743.5 seconds. Table 2 gives the

percent gaps at termination for the five remaining instances.

We next analyze the lower bounds obtained with the LP relax-

ations of formulations F1, F2 and FP, as well as the lower bound given

by the optimal value of formulation FP. Tables 3 and 4 report the per-

cent gaps from the optimal solution associated with them. Average

values among the three instances of the same dimension generated

from a given original instance are given. Again, results for Types I and

II instances are reported separately.

In both tables, under headings n and p we give the dimension of

the instances, without taking into account the dummy facility used to

model the penalty for not serving a customer. Under the heading ori-

gin we give the name of the source instance, the gaps corresponding

to the LP relaxations of F1, F2 and FP are given under the headings LF1,

LF2 and LFP, respectively. Finally, under heading FP we give the per-

cent gaps of the lower bound given by the optimal value of program

FP.

As can be seen in Tables 3 and 4, formulation F2 is rather loose

and the LP gap it provides is the largest, specially for the smaller

instances and large values of p in both, Types I and II instances. The

smallest LP gap obtained with this formulation was over 15 percent.

The average gap for instances with four medians was 33 percent, for

instances with five medians it was 41 percent and for instances with

six medians, 48 percent. Nevertheless, the average CPU time required

to find this bound for Type I instances was 5.9 seconds, and for Type

II instances, 7.5.

Tables 3 and 4 also show that formulation F1 is much stronger than

formulation F2, in terms of the quality of its LP lower bound. Indeed,

the percent deviation of this lower bound with respect to the optimal

value was, on the average, 7.5 percent. Moreover, it never exceeded

22 percent and was under 10 percent in 214 of the 270 instances. In

the case of formulation F1, the value of p does not seem to have any

effect on the quality of the LP bound. Also, similar gaps are observed

in Types I and II instances. As in the case of formulation F2, percent

gaps seem to be slightly smaller for larger instances. Times required

to compute this lower bound are similar to the ones obtained with
formulation F2. t
Surprisingly, the lower bound given by the LP relaxation of the

pproximation of the RpMF given by FP is only slightly worse than

he LP bound of formulation F1 and much better than the LP bound of

2. On the average, the percent gaps given under LF2 are four times

arger than the ones given under LFP and those, are twice the ones

nder LF1. For 109 of the 270 instances this gap was under 10 percent

nd, they ranged in (0.8 percent, 28.9 percent).
As expected, the lower bound given by the optimal solution of

P is very tight. Indeed, the average gap over the 270 instances was

.54 percent and it never exceeded 4 percent. Moreover, for 34 in-

tances it was exactly 0, and for 222 it was under 1 percent. However,

s we will report later, obtaining these tight bounds required larger

PU times.

To better illustrate the quality of the solutions given by the ap-

roximation FP, Fig. 3 shows the percent deviations of the upper and

he lower bounds obtained with FP from the optimal value, for each

nstance. As can be seen in this figure, the results obtained with this

pproximation are very good, specially in the case of Type II instances,

here no solution was more than 0.1 percent away from the optimal,

nd the lower bounds never reached a deviation of 1 percent.

The CPU times required to solve FP for the different instances

re shown in Fig. 4 exactly in the same way they were reported for

ormulation F2 in Fig. 2. As this figure shows, similar patterns to those

bserved for formulation F2 can be seen, although differences are now

moother; the difference between Types I and II instances is smaller,

nd the growth of time requirements as the number of customers

ncreases is quite slower.

Next, we analyze the quality of the heuristic solutions for the

pMF built from the solutions of FP. The percent deviation of the

alues of such solutions with respect to the optimal solution was, on

he average, 0.002 percent. It never exceeded 0.35 percent and it was
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Table 3

Lower bounds: Percent gaps from the optimum for Type I instances.

n p Origin LF1 LF2 LFP FP

150UFLP 5.54 41.10 10.12 0.23

4 49UFLP 6.59 47.80 12.19 2.08

88UFLP 9.67 54.23 20.18 3.24

150UFLP 6.77 54.76 11.23 0.10

20 5 49UFLP 7.87 59.17 11.52 0.44

88UFLP 13.69 63.83 17.63 0.88

150UFLP 6.22 64.68 11.56 0.30

6 49UFLP 7.29 69.89 11.61 0.47

88UFLP 12.59 71.80 17.67 1.20

150UFLP 2.85 29.00 7.69 0.39

4 49UFLP 9.72 42.70 15.00 1.91

88UFLP 14.71 49.15 24.83 3.18

150UFLP 4.33 40.42 8.28 0.09

25 5 49UFLP 8.71 47.85 13.04 0.36

88UFLP 13.92 54.50 17.50 0.92

150UFLP 5.11 49.59 9.66 0.39

6 49UFLP 10.61 58.61 14.10 0.32

88UFLP 10.03 61.40 14.18 1.30

150UFLP 3.36 23.45 6.89 0.42

4 49UFLP 9.46 35.20 14.76 1.80

88UFLP 13.24 42.02 21.25 2.46

150UFLP 3.57 31.52 6.83 0.00

30 5 49UFLP 9.38 40.42 13.07 0.31

88UFLP 12.25 48.37 16.82 0.62

150UFLP 3.65 39.53 7.11 0.33

6 49UFLP 9.93 48.26 13.25 0.42

88UFLP 10.25 54.72 13.94 0.84

150UFLP 4.02 26.68 9.25 0.00

4 49UFLP 7.67 35.57 13.07 1.72

88UFLP 13.44 34.03 17.75 1.84

150UFLP 6.72 36.00 10.42 0.00

35 5 49UFLP 7.96 39.85 11.49 0.21

88UFLP 11.56 39.23 15.61 0.49

150UFLP 7.06 44.72 11.01 0.07

6 49UFLP 7.61 45.12 10.99 0.26

88UFLP 9.46 45.47 13.38 0.62

150UFLP 3.90 21.79 7.73 0.00

4 49UFLP 7.56 31.84 12.28 1.69

88UFLP 13.65 32.06 18.99 1.85

150UFLP 3.65 29.40 5.68 0.01

40 5 49UFLP 7.88 36.36 11.29 0.28

88UFLP 12.42 37.22 16.06 0.56

150UFLP 2.77 35.17 5.94 0.03

6 49UFLP 7.50 40.19 10.94 0.18

88UFLP 10.37 41.56 14.43 0.56

150UFLP 2.99 18.48 4.68 0.00

4 49UFLP 7.92 30.66 12.17 1.59

88UFLP 12.25 27.81 17.57 1.79

150UFLP 2.07 24.89 3.88 0.09

45 5 49UFLP 7.85 33.77 11.30 0.25

88UFLP 11.23 32.83 14.45 0.59

150UFLP 2.38 31.53 4.53 0.06

6 49UFLP 7.96 37.33 11.23 0.10

88UFLP 9.48 37.22 13.78 0.49
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Table 4

Lower bounds: Percent gaps from the optimum for Type II instances.

n p Origin LF1 LF2 LFP FP

4 100EuclUFLP 5.67 40.92 10.48 0.41

50EucUFLP 5.15 46.87 8.50 0.35

20 5 100EuclUFLP 7.79 54.68 11.94 0.22

50EucUFLP 5.21 58.25 8.50 0.24

6 100EuclUFLP 6.96 66.25 10.82 0.24

50EucUFLP 5.49 66.50 9.46 0.19

4 100EuclUFLP 6.32 34.28 9.93 0.29

50EucUFLP 5.95 41.21 9.03 0.32

25 5 100EuclUFLP 6.41 44.63 9.92 0.20

50EucUFLP 6.05 50.52 10.06 0.22

6 100EuclUFLP 6.70 52.87 11.45 0.23

50EucUFLP 5.97 58.05 10.56 0.20

4 100EuclUFLP 6.46 28.19 9.96 0.23

50EucUFLP 5.27 34.54 8.25 0.30

30 5 100EuclUFLP 6.88 37.39 9.87 0.27

50EucUFLP 5.94 43.57 9.64 0.27

6 100EuclUFLP 6.68 45.20 10.22 0.23

50EucUFLP 6.04 49.95 10.51 0.17

4 100EuclUFLP 7.04 26.47 10.23 0.18

50EucUFLP 6.58 27.60 9.45 0.32

35 5 100EuclUFLP 7.48 35.84 10.87 0.20

50EucUFLP 5.76 36.13 8.87 0.22

6 100EuclUFLP 6.11 43.24 9.95 0.27

50EucUFLP 5.87 43.80 9.79 0.15

4 100EuclUFLP 7.34 23.07 10.47 0.17

50EucUFLP 7.53 23.63 10.29 0.36

40 5 100EuclUFLP 7.27 29.21 11.25 0.21

50EucUFLP 7.28 31.88 10.27 0.17

6 100EuclUFLP 7.23 35.99 11.26 0.22

50EucUFLP 6.82 38.69 10.68 0.14

4 100EuclUFLP 7.23 20.00 10.84 0.13

50EucUFLP 6.98 19.93 9.57 0.22

45 5 100EuclUFLP 7.47 26.38 10.87 0.13

50EucUFLP 6.44 27.36 8.90 0.25

6 100EuclUFLP 7.41 32.99 10.89 0.18

50EucUFLP 6.61 34.56 10.06 0.11
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in 251 of the 270 instances. For the instances where this heuristic

olution was not optimal we compared the set of opened facilities in

his solution with the same set in the optimal solution found solving

2. In all of these instances the sets contained one single different

acility except for two instances (both with p = 5) where the difference

as in two facilities.

Summarizing, formulation F2 has strong memory requirements

ut, despite having quite loose LP bounds can be solved within rea-

onable amounts of time when the memory requirements are afford-

ble. Formulation F1 is more general than F2, since it can cope with
ituations with non-uniform failure probabilities. This formulation is

ore compact than F2 and this reduces its space requirements, which

llows to solve larger instances. However, the time requirements for

olving them using standard solvers is very large. This is probably

ue to the fact that it is a mixed integer programming formulation

nd in the constraints linking binary and continuous variables there

re some coefficients that can be very small as compared to the co-

fficients in the other constraints. This causes this formulation to be

ll-conditioned and increases its computational burden. Finally, using

he approximation given by FP we obtain both, heuristic solutions and

ower bounds for the RpMF. The space requirements of this formula-

ion are much smaller than those of F1, and it can be solved in times

hat are, on the average, smaller than the times needed to solve F2.

he obtained solutions were optimal in most cases, and very close to

ptimal otherwise. Moreover, this approximation can be used also in

ituations where failure probabilities are different.

Additionally to the above experiments, we have solved the p-

edian problem (pM) and the reliability p-median problem with at-

ustomer service (RpMC) on these homogeneous instances, and we

ave evaluated their optimal solutions (sets of facilities) as solutions

o the RpMF.

In 91 instances, the set of facilities in the pM solution was optimal

or the RpMF problem with q = 0.05, but it was far from optimal in the

emaining ones. The average deviation of the corresponding solution
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Fig. 4. CPU times (seconds) for solving FP.

Fig. 5. Example: Comparison of the solutions to RpMF, pM and RpMC.
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Table 5

Average of CPU times (s) for instances with site-dependent failure

probabilities.

Formulation F1 FP approx.

n = 20 n = 25 n = 20 n = 25

q � 0.03 ± 0.003 7.39 48.00 0.56 1.50

q � 0.03 ± 0.025 4.78 29.49 0.53 1.42

q � 0.07 ± 0.003 112.19 1255.88 0.75 2.30

q � 0.07 ± 0.025 122.92 436.06 0.83 2.24

q = 0.05 20.58 102.36 1.36 4.03
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from the optimal RpMF solution was 2.89 percent and it reached 24.65

percent in one instance. In the case of the RpMC instances, the set of

facilities in their optimal solution was optimal for the RpMF in 167

instances but, on the average, it yielded a RpMF solution with a devi-

ation of 0.13 percent from the optimum. According to these results,

at least for small failure probabilities, the RpMC and the RpMF have

similar solutions although they need not be the same. As opposite,

pM solutions can be quite weak as solutions for the RpMF. A detailed

example of this fact is given in Fig. 5. In this example, a set of 25 cus-

tomers with one unit of demand each have been randomly generated

in the 100 × 100 square, and the corresponding RpMF instance has

een generated considering Euclidean distances, a penalty for losing

customer equal to 200, a failure probability q = 0.05, and p = 3. The

gure shows the optimal sets of facilities for the RpMF, the pM and

he RpMC, respectively, their associated cost as solutions to the RpMF

nd the corresponding percent deviation from the optimal solution.

s it can be seen, beyond the difference in the solution costs, the three

ets of facilities are quite different. Indeed, the facility concentration

ffect already observed by other authors in the case of the RpMC, is

ven stronger in the case of the RpMF.

Summarizing, we can conclude that it is important both, to in-

lude failure probabilities into consideration when facilities are in-

eed prone to failure, and to model adequately the actual service

olicies. Otherwise, excessively simplified models will yield solutions

hat can be quite far from optimal. From the above analysis users may

ecide, based on their own requirements, when to apply the more

recise RpMF model, at the price of higher computation burden, or

n approximated model, RpMC, still giving reasonably good solutions.

n any case, one should not forget that the RpMF is a new available

odel that adds another entry in the reduced list of tools for handling

acility failures or disruption.

5.2. General instances

All the computational experiments carried out in the previous sec-

tion were performed on instances with homogeneous failure prob-

abilities. We next report the results obtained in a second series of
xperiments carried out on instances with site-dependent failure

robabilities. Of course, for this second set of experiments, only for-

ulation F1 and the approximation given by FP are used.

Instances with site-dependent failure probabilities were gener-

ted from the 30 instances with n � {20, 25} and p = 4 of the previous

ection. Probabilities were randomly taken from 4 different intervals

± s with m � {0.03, 0.07} and s � {0.003, 0.025} yielding a total of

0 × 4 = 120 instances.

Using formulation F1 we could solve 55 instances with n = 20

nd 45 with n = 25 within 2 hours of CPU time. Branch and bound

as stopped because of the CPU time limit in 33 percent of the re-

aining instances, and because of memory shortage in the rest. All

hese cases correspond to instances with m = 0.07. When using the

pproximation given by FP, all instances could be solved in less than

5 seconds. The medians of the required CPU times are reported in

able 5. For ease of comparison, the table also contains the medians

PU times for the instances with homogeneous failure probabilities

f the same dimensions. As can be seen,the effect of the value and

he variability of the failure probabilities is very different in the case

f F1 and FP. As the variability of the failure probabilities increases,

nstances tend to become a bit easier to solve, specially in the case

f formulation F1. Moreover, the increase of these probabilities has

dramatic effect on the computational burden of formulation F1. In-

eed, as mentioned above, even for small sizes as the ones considered

n this experiment, some instances could not be solved to optimality

ithin 2 hours of CPU time. Even though FP also becomes harder to

olve as the probabilities increase, the effect is much softer in this

ase.

In concordance with what was observed in the homogeneous case,

he solutions provided by the FP approximation were always very

ood. In the case of the 60 instances with n = 20 there was one single

nstance for which the solution did not coincide with the one provided

y F1 (regardless the termination criterion of F1), and its deviation

rom optimal was 0.13 percent. In the case of instances with n = 25,

he solution provided by FP coincided with the one obtained with F1

n 52 instances, it was better in six instances where F1 terminated
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Table 6

Number of instances (out of 15) with coincident solutions (set of facilities).

n = 20 n = 25

A B C D A B C D

A: q � 0.03 ± 0.003 – 10 10 8 – 6 6 3

B: q � 0.03 ± 0.025 10 – 8 10 6 – 2 9

C: q � 0.07 ± 0.003 10 8 – 7 6 2 – 5

D: q � 0.07 ± 0.025 8 10 7 – 3 9 5 –
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23–36.
ecause of the limits on CPU time or memory, with deviations down

o − 5 percent and it was worse in two instances, with a maximum

eviation of 1.41 percent.

To conclude this experiment, we gathered the solutions obtained

ith formulation F1 for all instances, and intervals of probabilities, to

heck to what extent the optimal solution (set of facilities) depends

n the failure probabilities. Table 6 displays the number of instances

or which the set of optimal facilities obtained with two different in-

ervals of failure probabilities was the same. From this table we can

onclude that the set of optimal facilities depends quite a lot on the

alues of the failure probabilities, and more on their magnitude than

n their variance, specially in the case of larger instances. The set of

ptimal facilities was the same for the four intervals of failure proba-

ilities only in seven of the 30 original instances. In the remaining 23

nstances, either two or three different sets of optimal solutions were

btained, depending on the considered intervals of probabilities. This

einforces our belief that even if failure probabilities are usually small,

gnoring them and simply solving a pM instead of the RpMF can be a

ig mistake.

. Conclusions

In this paper we introduce different formulations to model a fa-

ility location problem where facilities may fail and service must be

rovided once the customer reaches the serving facility (at-facility

ervice). Therefore, customers do not have information concerning

acility failures before reaching them. In addition, we assume that,

hen failures occur, the sequence in which customers visit the fa-

ilities for being served is the one minimizing their expected total

ravel cost. For this model, we first present a compact formulation

hat uses variables with three indices and mixes binary and con-

inuous variables. Then, for the particular case where all the failure

robabilities are the same, we present a second formulation, rather

ntuitive, that only uses binary variables, at the price of using four

ndex variables. These are used to trace the prospective paths of each

f the customers. We compare both formulations and prove that in

he case of homogeneous failure probabilities they are equivalent.

oreover, the computational experiments show that the first one

rovides tighter LP lower bounds. Both formulations require large

omputing times to solve even medium size instances. For this rea-

on, we introduce a third formulation that heuristically approximates

he exact solution with a much lower computing time and with

igh accuracy. Computational experiments show that this formula-

ion gives extremely good solutions at a non-expensive computing

ime.

Further research on this topic includes the development of ad-hoc

ranch-and-cut algorithms for solving the exact formulations of the

pMF model that allow to address larger size instances.
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